
MATH 1A - MOCK FINAL

PEYAM RYAN TABRIZIAN

Name:

Instructions: This is a mock final, designed to give you an idea of what
the actual final will look like. Make sure you do it, the actual exam will be
very similar to this one (in length and in difficulty)!

1 20
2 10
3 50
4 20
5 20
6 20
7 10
Bonus 1 5
Bonus 2 5
Bonus 3 5
Total 150

Date: Friday, August 5th, 2011.
1



2 PEYAM RYAN TABRIZIAN

1. (20 points) Use the definition of the integral to evaluate:∫ 2

1

x2dx

You may use the following formulas:

n∑
i=1

1 = n

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =
n2(n+ 1)2

4
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2. (10 points) Evaluate the following limit:

lim
n→∞

1

n

(√
1

n
+

√
2

n
+ · · ·+

√
n

n

)
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3. (50 points, 5 points each) Find the following:

(a) The antiderivative F of f(x) = x2 + 3x3 − 4x7 which satisfies
F (0) = 1

(b)
∫ 1

−1 |x| dx (Hint: Draw a picture)
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(c)
∫ π
−π sin(x)(1 + cos(x) + ex

2
+ 42x2012)dx

(d)
∫
x2 + 1 + 1

x2+1
dx
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(e)
∫ e
1

(ln(x))2

x
dx

(f)
∫ 2π

π
(cos(x)− 2 sin(x)) dx
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(g) g′(x), where g(x) =
∫ ex
x

√
1 + t2dt

(h)
∫ π

4

0
1+cos2(θ)
cos2(θ)

dθ
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(i)
∫
ex
√
1 + exdx

(j) The average value of f(x) = sin(x) on [−π, π]
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4. (20 points) Find the area of the region enclosed by the curves:

y = x2 − 4 and y = 4− x2
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5. (20 points, 5 points each) Find the following limits

(a) limx→∞
√
x2 + x− x

(b) limx→∞(1 + x)
1
x
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(c) limx→0 xe
sin( 1

x
)

(d) limx→∞
(ln(x))2

x
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6. (20 points, 5 points each) Find the derivatives of the following func-
tions
(a) f(x) = sin(x)etan(x)

(b) f(x) = xcos(x)
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(c) y′, where x3 + y3 = xy

(d) y′ at (0, 1), where x2+y2

x2−y2 = −y
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7. (10 points) Find the absolute maximum and minimum of the fol-
lowing function on [0, π]:

f(x) = x+ cos(x)
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Bonus 1 (5 points) Show that if f is continuous on [0, 1], then
∫ 1

0
f(x)dx is

bounded, that is, there are numbers m and M such that:

m ≤
∫ 1

0

f(x)dx ≤M

Hint: Use one of the ‘value’ theorems that we haven’t used a lot
in this course (see section 4.1)
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Bonus 2 (5 points) If f(x) = Ax3 + Bx2 + Cx + D is a polynomial such
that:

A

4
+
B

3
+
C

2
+D = 0

Show that f has at least one zero in (0, 1).

Hint: What is the average value of f on [0, 1]?
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Bonus 3 (5 points) Another way to define ln(x) is:

ln(x) =

∫ x

1

1

t
dt

Show using this definition only that for all a and b:

ln(ab) = ln(a) + ln(b)

Hint: Fix a constant a, and consider the function:

g(x) = ln(ax)− ln(x)− ln(a)


